【画面:1965 年 5 月的导弹试验场控制室,示波器上的电磁干扰波形(杂乱无章的高频震荡)与发动机振动波形(稳定的 37 赫兹正弦曲线)形成对比,叠加后显示 “振动耦合加密” 技术生效时,干扰波形被密钥脉冲完全覆盖。特写同步误差监测仪,±0.02 秒的红色阈值线内,振动基准与密钥脉冲的重合度达 99.7%。数据流动画显示:37 赫兹振动频率 = 1964 年 11 月齿轮振动频率 = 1963 年笔迹压力 37 克力的物理转化,±0.02 秒误差 = 1964 年双密钥验证误差的 1/10,两者叠加生成的 “37+0.02=37.02” 与 1965 年 4 月的沙粒校验次数 3700 形成 1:99.9 的精度升级比。字幕浮现:当发动机的每一次振动都成为密钥的时间基准,37 赫兹的频率与 ±0.02 秒的误差共同编织抗干扰的加密屏障 ——1965 年 5 月的技术突破不是偶然,是中国密码人用机械韵律驯服电磁干扰的必然结果。】
【镜头:陈恒站在导弹发动机测试台旁,振动传感器的探头吸附在缸体上,检测仪屏幕显示 37 赫兹的稳定波形,与旁边示波器上的电磁干扰波形形成鲜明对比。控制台上的加密设备指示灯闪烁紊乱,当振动耦合开关开启后,指示灯按 37 赫兹频率规律跳动。远处报务员正在记录振动数据,笔记本上的波形草图与 1964 年 11 月齿轮振动波形完全重合,标注的 “37Hz = 密钥心跳” 字样被红笔圈出。】
1965 年 5 月 12 日清晨,导弹试验场的电磁干扰比预期强烈。第三次指令传输试验因干扰中断时,陈恒注意到控制台的发动机振动监测仪始终显示 37 赫兹 —— 这个频率在干扰最严重时仍保持 ±0.5 赫兹的稳定波动。“干扰能打乱电波,但打不乱机械振动的固有频率,” 他对技术组说,手指在振动波形图上划出密钥脉冲的理想轨迹,每 37 赫兹的波峰处标注 “密钥触发点”,与 1964 年 11 月齿轮的振动频率完全一致。
当天的应急会议上,陈恒展示了 “振动耦合加密” 方案:将导弹发动机的 37 赫兹振动作为时间基准,密钥脉冲严格同步于振动波峰,电磁干扰的随机波动因无法匹配机械振动规律而被过滤。他在黑板上计算同步误差:“发动机振动周期 27 毫秒,密钥脉冲必须落在 ±0.02 秒窗口内,相当于振动波峰前后的 7.4% 区间。” 用粉笔划出的误差范围(37 赫兹波形上的红色短线)与 1964 年双密钥验证的 0.02 毫米机械误差形成精度呼应,战士们发现,这个区间长度恰好与 1963 年签名笔迹的飞白长度一致。
【特写:陈恒用游标卡尺测量振动波形图上的波峰间距(27 毫米),与 37 赫兹周期(27.027 毫秒)形成 1:1000 比例转换。同步误差监测仪的指针在 ±0.02 秒间波动,最小刻度 0.001 秒的精度与 1965 年 1 月算盘的磨损深度 0.37 毫米形成数值关联。测试用的振动传感器线缆长度(3.7 米)与频率数值 37 形成 1:10 比例,与 1964 年沙地图谱比例一致。】
技术验证持续了 19 天,陈恒带领团队在不同干扰强度下测试同步精度。当电磁干扰强度达到峰值(3.7 伏 / 米)时,未启用耦合技术的指令错误率升至 37%;启用后,错误率骤降至 0.37%,与 1964 年 10 月的数据误差率形成技术闭环。“振动频率每偏离 1 赫兹,同步误差就增加 0.005 秒,” 他在测试报告中记录,37 赫兹 ±1 赫兹的允许波动范围,与 1963 年 6 月的雷电电流波动范围形成安全冗余比。
5 月 31 日的实战测试中,“振动耦合加密” 技术首次应用于导弹指令传输。陈恒站在双屏监测前,左侧显示发动机振动波形(37.1 赫兹),右侧显示密钥脉冲同步状态,当干扰突然增强时,脉冲仍精准落在 ±0.018 秒窗口内。传输结束后,系统显示指令完整性达 99.3%,比未加密时的 63% 提升 36.3 个百分点,这个差值与 1965 年 4 月的沙粒校验成功率提升幅度完全一致。他注意到测试时长(37 分钟)与振动频率 37 赫兹形成 1:1 对应,这个细节被红笔标注在日志末尾。
【画面:夕阳下的导弹发动机测试台,振动传感器的线缆在风中轻微摆动,3.7 米长度与远处通信铁塔的 37 米标记形成 1:10 比例。陈恒的笔记本摊开在控制台上,振动耦合原理图中的 37 赫兹波形与 1964 年 11 月齿轮振动图重叠,重合度达 92%。同步误差监测仪的 ±0.02 秒刻度线,与 1963 年密钥钢板的刻痕深度标准线形成视觉呼应。】
当晚整理设备时,陈恒发现振动传感器的固定螺栓扭矩(3.